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1.  Introduction

The spatial dimensionality of a system can have a profound 
effect upon its physical properties. This may be observed 
in both structural and dynamic phenomena, with examples 
including the absence of long-range translational order in a 
2D crystal [1] and the differing diffusive behaviour seen in 
one and two dimensions [2, 3]. Another notable and widely 
studied example is the melting transition in 2D. Here, unlike 
melting in 3D [4], it is proposed that an additional ‘hexatic’ 
phase exists between the 2D liquid and crystalline phases. 
This results in melting via two consecutive phase transitions, 
a scenario described by the KTHNY theory from Kosterlitz, 
Thouless, Halperin, Nelson and Young [5–8].

More specifically, KTHNY theory links the melting of 2D 
materials to the unbinding of topological defects. The three 
key types of defects—dislocation pairs, dislocations and 
disclinations—all consist of five- or seven-fold coordinated 
particles, and are illustrated in figure 1. Crystalline states in 

2D possess quasi-long-ranged translational order and long-
ranged bond-orientational order and the only type of defect 
consistent with this is a dislocation pair, which is composed 
of two five-fold and two seven-fold coordinated particles (see 
figure 1(a)). Clearly shown here is that the presence of a bound 
dislocation pair in a crystal does not disrupt the translational 
or bond-orientational order of the crystal. The softening of 
the shear elasticity of the crystal in the vicinity of the crystal-
hexatic transition can be linked to the presence of these dislo-
cation pairs and is described by a recursion relation: as more 
dislocation pairs appear the crystal becomes increasingly soft, 
which in turn increases the probability of the creation of new 
dislocation pairs, which further softens the crystal. At the 
crystal-hexatic transition, bound dislocation pairs unbind into 
isolated dislocations as a result of which the shear elasticity 
disappears [6–8]. A dislocation, consisting of a five-fold and 
a seven-fold coordinated particle, is shown in figure 1(b), and 
leads to a loss of translational order but the retention of bond-
orientational order. The resulting hexatic phase is therefore 
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characterised by short-ranged translational order and quasi-
long-ranged six-fold bond-orientational order. The second 
step of melting to an isotropic fluid is associated with the 
unbinding of dislocations to form isolated five- and seven-fold 
disclinations (see figure 1(c)), which disrupt the system with 
respect to both the translational and bond-orientational order. 
The resulting liquid phase thus has only short-ranged transla-
tional and short-ranged bond-orientational order.

The spatial range of the bond-orientational order is quanti-
fied by the bond-orientational correlation function [9, 10]

g6(r) = Re
〈
ψ6,i(r) · ψ∗

6,i(0)
|ψ6,i|2

〉
,� (1)

with the sixfold bond-orientational order parameter, ψ6,i, 
defined as [10]

ψ6,i(t) =
1
n

n∑
j=1

exp(i6θij(t)).� (2)

Here n is the number of nearest neighbours and θij is the angle 
between the vector connecting the central particle, i, with 
neighbouring particles, j, and a fixed reference axis. At large 
r g6(r) attains a constant value in the crystal, but decays alge-
braically in the hexatic phase, with g6(r) ∼ r−1/4 at the trans
ition between the hexatic and liquid [7, 11]. In the liquid, the 
short-ranged bond-orientational order leads to an exponential 
decay of g6(r).

Alternatively, dynamic criteria can be used to distinguish 
between the liquid, hexatic and crystal states [12], and these 
are particularly useful for the consideration of experimental 
systems imaged over a finite distance for a long time. Here, 
the analogous expression to equation (1) considers the varia-
tion in the value of g6 with time, as [10, 12, 13]

g6(t) = Re
〈
ψ6,i(t) · ψ∗

6,i(0)
|ψ6,i|2

〉
,� (3)

with 〈...〉 denoting an average taken over all particles and 
time origins. For long times, g6(t) tends towards a con-
stant for the crystal phase whilst in the hexatic phase, g6(t) 

decays algebraically as g6(t) ∼ t−η6/2, where the exponent 
0 < η6 < 1/4 [7, 10]. Hence, g6(t) ∼ t−1/8 at the hexatic-
liquid transition [10, 12]. In the liquid phase g6(t) decays 
exponentially as g6(t) ∼ exp(−t/τ6) with τ6 a character-
istic bond-orientational correlation time. The exponent η6 is 
directly related to the Frank elastic constant FA as [7, 11]

η6 =
18kBT
πFA

,� (4)

with kB Boltzmann’s constant and T the temperature. Frank’s 
constant is an effective stiffness of the bond-orientational 
field, or, in short, an orientational stiffness [11, 14]. Because 
η6 = 1/4 at the liquid-hexatic transition [7, 11], the value of 
Frank’s constant at this transition is FA/(kBT) = 72/π.

The nature of the 2D melting transition has been exten-
sively studied in computer simulations ever since the intro-
duction of the problem by Alder and Wainwright in 1962 [15]. 
While it is beyond the scope of this article to provide a com-
prehensive review of all of these simulations studies, we wish 
to highlight some more recent advances considering factors 
known to alter the melting scenario. Firstly, the dependence 
on interaction potential has been studied for particles with 
a short-range attraction between them [16] and, over par
ticularly large length scales, for repulsive power-law interac-
tions [17, 18], where the liquid-hexatic transition is found to 
change from first order to continuous with increasing softness 
of interaction [18]. For hard core interactions, the particle 
shape has been observed to effect both the nature of the phases 
and the order of the transitions [19]. Finally, particularly perti-
nent to experimental studies, are works considering the effect 
of pinned particles [20, 21] and out of plane fluctuations [22], 
which are often found in quasi-2D experiments.

Experimentally, a major body of work considers the phase 
behaviour of monolayers of super-paramagnetic colloidal 
particles interacting via a soft potential [9, 11, 12, 23, 24]. 
For this system, it was established that melting takes place 
via two consecutive, continuous transitions with an interme-
diate hexatic phase. Furthermore, the specific heat [25] and 
elastic constants [11] around the transitions in this system 

Figure 1.  An illustration of the defects seen in the melting of 2D crystals: (a) a dislocation pair; (b) a dislocation; and (c) a 5-fold 
disclination. Particles coloured red are those with seven nearest neighbours and particles coloured green are those with five nearest 
neighbours. Arrows indicate the bond-orientation on each side of the defect and lines mark the particle positions expected for systems with 
translational order.
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have been reported and the effect of random pinning has been 
addressed [20]. Other experiments have also considered the 
melting behaviour of charge stabilised systems [26], sticky 
hard spheres [27, 28] and soft thermosensitive colloidal par-
ticles [13, 29].

The simplest interacting many-body system in 2D is a 
system of thermal hard disks as first studied with computer 
simulations in 1962 [15]. Inherent to the hard interactions, 
the phase diagram for hard disks is independent of temper
ature, and thus only dependent on the area fraction. For hard 
disks the nature of the melting transition has been the subject 
of a long and ongoing debate [15, 30–34], but recently large 
scale computer simulations reported two-step melting via a 
hexatic phase and a first order liquid-hexatic transition [17, 
35]. The two-step melting via a hexatic phase was then also 
experimentally established [36] by considering a colloidal 
monolayer in sedimentation-diffusion equilibrium. In par
ticular, in the experiments it was found that melting of the 
crystal proceeds via a hexatic phase, with a first order liquid-
hexatic transition and a coexistence region determined from 
the equation of state of φ ≈ 0.68–0.70. The hexatic phase was 
observed for 0.70 < φ < 0.73 and the continuous hexatic-
crystal transition at φ ≈ 0.73. In this article, we expand upon 
these experimental results and consider the behaviour of the 
bond-orientational correlation time and Frank’s constant upon 
approaching the liquid-hexatic and hexatic-crystal transition, 
respectively. In addition, we compute the excess entropy from 
the radial distribution functions for a wide range of area frac-
tions covering the liquid, hexatic and crystal phases.

2.  Experimental methods

The experiment has been introduced in [36], so only the 
essentials will be recapped here. We consider a tilted mono
layer of melamine formalydehyde spheres with a hard-sphere 

diameter of σ = 2.79 µm in a water-ethanol mixture. These 
particles form a monolayer at the base of a glass sample 
cell (quartz glass Hellma cell, see figure 2(a) inset) and are 
an excellent hard disk model system [37, 38]. The samples 
are placed on a custom-built bright-field video microscope, 
which is then tilted by a small and variable angle, α. In 
figure  2 we show a schematic (a) and a photograph (b) of 
the setup. The system is imaged using a 20×  objective with 
images recorded on a PixeLINK CMOS camera at a reso-
lution of 1280  ×  1024 pixels. The tilted monolayer is then 
left to equilibrate for many weeks to reach an in-plane sedi-
mentation-diffusion equilibrium (see figure 1(a) of [36]). The 
system is imaged at a rate of one frame per sec for 2 h, and 
standard particle tracking procedures [39] are used to obtain 
particle coordinates and trajectories.

3.  Results and discussion

3.1.  Bond-orientational order correlation time

Upon approaching the hexatic phase from the liquid, it has 
been shown that the bond-orientational correlation length 
diverges [11]. Consequently, it is also expected that the corre
sponding bond-orientational correlation time, τ6, diverges [11, 
40, 41]. We determine τ6 from the bond-orientational correla-
tion functions g6(t), shown in figure  3(a) for a tilt angle of 
α = 0.25◦ [36], via g6(t) ∼ exp(−t/τ6). The bond-orienta-
tional correlation time as a function of φ upon approaching 
the hexatic phase from the liquid phase is shown in figure 3(b) 
for data averaged over all six tilt angles. While at relatively 
low area fractions τ6 is about 10 s, it sharply increases upon 
approaching the first order liquid-hexatic phase transition at 
φ = 0.68 [36]. This is reminiscent of the critical fluctuations 
that diverge upon approaching a continuous transition, i.e. 
critical slowing down. In our case, however, this divergence is 

Figure 2.  (a) A schematic of the custom-built tilting optical microscopy set-up. Inset: an image of the sample cell used: a Hellma quartz 
glass cell with internal width of 9 mm, internal length of 20 mm and internal height of 200 μm. (b) A photograph of the tilting microscopy 
set-up.
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preempted by a weakly first order phase transition and hence 
the bond-orientational correlation time does not diverge. 
Nevertheless, we can still describe the onset of the divergence 
of τ6 for area fractions below the coexistence region using [11, 
40, 41]

τ6 ∼ exp

[
a

|1/φ− 1/φh|ν

]
.� (5)

Here a is a constant, φh the area fraction where the system 
becomes fully hexatic, and the exponent ν = 1/2 [11, 40, 41]. 
As seen in figure 3(b), the data are very well described by this 
expression and from the fit we obtain a value for φh = 0.696, 
which is in excellent agreement with the start of the hexatic 
phase at φ = 0.70 [36]. This is further corroborated by the 
behaviour of η6 as a function of φ obtained using g6(t) ∼ t−η6/2 
[10, 36] and also shown in figure 3(b). Here η6 is close to zero at 
high area fractions (φ > 0.73), but then starts to increase upon 
decreasing φ and reaches the value of η6 = 1/4 at φ = 0.70. 
In other words, φ = 0.70 is the area fraction where the hexatic 
phase becomes unstable, consistent with the obtained value of 
φh = 0.696 from fitting equation (5) to our data.

3.2.  Frank’s constant

Next, we consider the behaviour of Frank’s constant, FA, in 
the hexatic phase and, in particular, upon approaching the 
hexatic-crystal transition. Frank’s constant is found directly 
from the exponent η6 via equation (4) as βFA = 18/πη6 with 
β = (kBT)−1 and is plotted as a function of φ in figure 3(c). At 
area fractions close to 0.70, i.e. where the hexatic phase starts, 
βFA is consistently close to the value of 72/π, i.e. where the 
hexatic phase is predicted to become unstable. As the area 
fraction increases, Frank’s constant sharply increases and its 
divergence can be described by [11, 40, 41]

βFA ∼ exp

[
2b

|1/φ− 1/φc|ν̄

]
.� (6)

Here, b is again a constant, φc the area fraction where the system 
becomes crystalline and the exponent ν̄ = 0.369 59. Our data 
are well described by equation (6) and from the fit we obtain a 
value for φc of 0.733. This is in good agreement with the loca-
tion of hexatic-crystal transition at  ≈0.73 [36]—despite the 
relatively large error bars and the three fitting parameters—and 
corroborates the continuous nature of this transition.

Figure 3.  (a) The height-resolved bond-orientational correlation function in time, g6(t) [36], for the sample at α = 0.25◦ across the whole 
range of area fractions. Note that a legend is only provided for the data between 0.65 < φ < 0.76. (b) The bond-orientational time τ6 as a 
function of the area fraction φ. The solid line is a fit according to equation (5). Also shown is the exponent η6/2 as a function of the area 
fraction, whose value of 1/8 indicates the area fraction at which the hexatic phase becomes unstable (see dashed horizontal line). (c) Frank’s 
constant, FA, as a function of the area fraction φ; the symbols are the experimental data and the solid line is a fit to the data according to 
equation (6). The horizontal straight line corresponds to the value of 72/π, i.e. below which the hexatic phase is unstable. Reprinted figure 
with permission from [36], Copyright 2017 by the American Physical Society.
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3.3.  Excess configurational entropy

Finally, we consider the excess configurational entropy, S2, 
as it has been suggested that this can be used as an indicator 
for freezing in two dimensions [42]. In particular, S2/kB, the 
first term of the excess entropy arising from pair interactions, 
should attain a universal value of  −4.5 at the freezing trans
ition irrespective of the exact nature of the particle interac-
tions [42]. For a 2D system, S2, is defined by [43]

S2 = −4kBφ

σ2

∫ ∞

0
[g(r)ln(g(r))− (g(r)− 1)] rdr,� (7)

where g(r) is the radial distribution function. To test the S2 
freezing criterion using our data, we first computed the radial 
distribution functions for different area fractions, which are 
shown in figure  4(a) for area fractions spanning the liquid, 
hexatic and crystal phases. At area fractions of 0.41, 0.58 and 
0.68 only a small number of peaks are observed, and the struc-
ture in g(r) decays rapidly, characteristic of the short ranged 
translational order in the liquid. For the g(r) in the hexatic 
phase (φ = 0.72), the range of correlations increases to about 
15σ, albeit still being short ranged, while at φ = 0.74 long 
range correlations in the g(r) are observed, reflecting the 
quasi-long ranged translational order in the crystal.

Next, we calculated the excess entropy according to equa-
tion (7) for a range of area fractions as shown in figure 4(b). 
At low area fractions, −S2/kB increases roughly exponentially 
with φ in agreement with previous reports [38, 44] and is in 
good agreement with previously reported simulation results 
for −S2/kB in the liquid phase [38]. Around φ = 0.65–0.69, 
however, there is a marked change in slope, which coincides 
with the start of the liquid-hexatic coexistence region. In [42] 
it was reported that at the melting transition −S2/kB takes the 
value of 4.5, which is indicated by the dashed horizontal line 
in figure 4(b). Our data reach this value at an area fraction of 
just over φ = 0.69, i.e. just after the change in slope, which 
approximately corresponds to the start of the hexatic phase at 

φ ≈ 0.70. This behaviour is very similar to results in [42] for 
experiments on NIPA particles and simulations of hard disks 
across the freezing transition, suggesting that the value of S2 
can be used to indicate the position of the freezing transition.

4.  Conclusion

In summary, we have further elucidated the nature of melting 
in 2D hard spheres by studying three additional quantities 
known to show characteristic behaviour close to the liquid-
hexatic and hexatic-crystal transitions. In particular, we first 
consider the bond-orientational correlation time as the hexatic 
phase is approached from the liquid. We find it shows evidence 
of a divergence associated with the onset of critical fluctations, 
but that this is preempted by the weakly first order liquid-
hexatic transition. We also compute Frank’s constant, which 
in the hexatic phase is found to diverge upon approaching the 
crystal. Finally, we obtain the excess entropy from the calcul
ation of the radial distribution functions for a wide range of 
area fractions across the liquid, hexatic and crystals phases 
and find that −S2/kB appears to reach a characteristic value 
of 4.5 at the onset of the freezing transition in agreement with 
previous reports.

Acknowledgments

We thank Daan Frenkel, Marjolein Dijkstra, Rene van Roij, 
Bob Evans, Hartmut Löwen and Francois Lavergne for useful 
discussions. The EPSRC and the European Research Council 
(ERC) are acknowledged for financial support (ERC Starting 
Grant 279541-IMCOLMAT).

ORCID iDs

Roel P A Dullens  https://orcid.org/0000-0003-1751-0958

Figure 4.  (a) Radial distribution functions, g(r), for area fractions across the liquid, hexatic and crystal phases. Note that they are shifted 
vertically for clarity. (b) The excess entropy −S2/kB, calculated from the g(r) via equation (7), as a function of the area fraction φ for 
α = 0.067◦. The solid line is the melting criterion of −S2/kB = 4.5 [42] and blue data points show values of −S2/kB from MC simulation 
from [38].
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